Inferring Hierarchical Orthologous Groups from Orthologous Gene Pairs
نویسندگان
چکیده
Hierarchical orthologous groups are defined as sets of genes that have descended from a single common ancestor within a taxonomic range of interest. Identifying such groups is useful in a wide range of contexts, including inference of gene function, study of gene evolution dynamics and comparative genomics. Hierarchical orthologous groups can be derived from reconciled gene/species trees but, this being a computationally costly procedure, many phylogenomic databases work on the basis of pairwise gene comparisons instead ("graph-based" approach). To our knowledge, there is only one published algorithm for graph-based hierarchical group inference, but both its theoretical justification and performance in practice are as of yet largely uncharacterised. We establish a formal correspondence between the orthology graph and hierarchical orthologous groups. Based on that, we devise GETHOGs ("Graph-based Efficient Technique for Hierarchical Orthologous Groups"), a novel algorithm to infer hierarchical groups directly from the orthology graph, thus without needing gene tree inference nor gene/species tree reconciliation. GETHOGs is shown to correctly reconstruct hierarchical orthologous groups when applied to perfect input, and several extensions with stringency parameters are provided to deal with imperfect input data. We demonstrate its competitiveness using both simulated and empirical data. GETHOGs is implemented as a part of the freely-available OMA standalone package (http://omabrowser.org/standalone). Furthermore, hierarchical groups inferred by GETHOGs ("OMA HOGs") on >1,000 genomes can be interactively queried via the OMA browser (http://omabrowser.org).
منابع مشابه
Using shared genomic synteny and shared protein functions to enhance the identification of orthologous gene pairs
MOTIVATION The identification of orthologous gene pairs is generally based on sequence similarity. Gene pairs that are mutually 'best hits' between the genomes being compared are asserted to be orthologs. Although this method identifies most orthologous gene pairs with high confidence, it will miss a fraction of them, especially genes in duplicated gene families. In addition, the approach depen...
متن کاملProkaryotic Phylogenies Inferred from Whole-Genome Sequence and Annotation Data
Phylogenetic trees are used to represent the evolutionary relationship among various groups of species. In this paper, a novel method for inferring prokaryotic phylogenies using multiple genomic information is proposed. The method is called CGCPhy and based on the distance matrix of orthologous gene clusters between whole-genome pairs. CGCPhy comprises four main steps. First, orthologous genes ...
متن کاملOrthoDB: the hierarchical catalog of eukaryotic orthologs
The concept of orthology is widely used to relate genes across different species using comparative genomics, and it provides the basis for inferring gene function. Here we present the web accessible OrthoDB database that catalogs groups of orthologous genes in a hierarchical manner, at each radiation of the species phylogeny, from more general groups to more fine-grained delineations between cl...
متن کاملCharacteristics of Human and Mouse Orthologous Protein-Coding Nucleotide Sequences with Large G+C Content Variations
Characteristics of human and mouse orthologous gene sequences which have large G+C content variations were investigated in this study. The orthologous gene pairs were classified into two groups according to the deviation between human and mouse G+C content at the third codon position (GC3) and were subsequently analyzed. In one group, mouse genes had higher GC3 than the corresponding human gene...
متن کاملInferring Positional Homologs with Common Intervals of Sequences
Inferring orthologous and paralogous genes is an important problem in whole genomes comparisons, both for functional or evolutionary studies. In this paper, we introduce a new approach for inferring candidate pairs of orthologous genes between genomes, also called positional homologs, based on the conservation of the genomic context. We consider genomes represented by their gene order – i.e. se...
متن کامل